The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development
Qifei Cong1, Breeanne M Soteros1, Mackenna Wollet2, Jun Hee Kim2, Gek-Ming Sia3
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. siag@uthscsa.edu.
Abstract
Complement-mediated synapse elimination has emerged as an important process in both brain development and neurological diseases, but whether neurons express complement inhibitors that protect synapses against complement-mediated synapse elimination remains unknown. Here, we show that the sushi domain protein SRPX2 is a neuronally expressed complement inhibitor that regulates complement-dependent synapse elimination. SRPX2 directly binds to C1q and blocks its activity, and SRPX2-/Y mice show increased C3 deposition and microglial synapse engulfment. They also show a transient decrease in synapse numbers and increase in retinogeniculate axon segregation in the lateral geniculate nucleus. In the somatosensory cortex, SRPX2-/Y mice show decreased thalamocortical synapse numbers and increased spine pruning. C3-/-;SRPX2-/Y double-knockout mice exhibit phenotypes associated with C3-/- mice rather than SRPX2-/Y mice, which indicates that C3 is necessary for the effect of SRPX2 on synapse elimination. Together, these results show that SRPX2 protects synapses against complement-mediated elimination in both the thalamus and the cortex.
Presented By Breeanne M Soteros | ORCID iD