Fast optical recording of neuronal activity by three-dimensional custom-access serial holography

Walther Akemann1, Sébastien Wolf1,2, Vincent Villette1, Benjamin Mathieu1, Astou Tangara1, Jozsua Fodor1, Cathie Ventalon1, Jean-François Léger1, Stéphane Dieudonné3, Laurent Bourdieu4

  1. Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
  2. Laboratoire de Physique de l'ENS (LPENS), École Normale Supérieure, CNRS, Université PSL, Paris, France.
  3. Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France. stephane.dieudonne@ens.fr.
  4. Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France. laurent.bourdieu@ens.fr.

Abstract

Optical recording of neuronal activity in three-dimensional (3D) brain circuits at cellular and millisecond resolution in vivo is essential for probing information flow in the brain. While random-access multiphoton microscopy permits fast optical access to neuronal targets in three dimensions, the method is challenged by motion artifacts when recording from behaving animals. Therefore, we developed three-dimensional custom-access serial holography (3D-CASH). Built on a fast acousto-optic light modulator, 3D-CASH performs serial sampling at 40 kHz from neurons at freely selectable 3D locations. Motion artifacts are eliminated by targeting each neuron with a size-optimized pattern of excitation light covering the cell body and its anticipated displacement field. Spike rates inferred from GCaMP6f recordings in visual cortex of awake mice tracked the phase of a moving bar stimulus with higher spike correlation between intra compared to interlaminar neuron pairs. 3D-CASH offers access to the millisecond correlation structure of in vivo neuronal activity in 3D microcircuits.

Presented By Walther Akemann | ORCID iD